English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/87911
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 7 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes

Autor Pey, Jon; Rubio, Angel; Theodoropoulos, Constantinos; Cascante, Marta; Planes, Francisco J.
Palabras clave Elementary carbon modes
Constraints-based modeling
Isotope labeling experiments
Metabolic flux analysis
Fecha de publicación 2012
EditorElsevier
Citación Metabolic Engineering 14(4): 344-353 (2012)
ResumenConstraints-based modeling is an emergent area in Systems Biology that includes an increasing set of methods for the analysis of metabolic networks. In order to refine its predictions, the development of novel methods integrating high-throughput experimental data is currently a key challenge in the field. In this paper, we present a novel set of constraints that integrate tracer-based metabolomics data from Isotope Labeling Experiments and metabolic fluxes in a linear fashion. These constraints are based on Elementary Carbon Modes (ECMs), a recently developed concept that generalizes Elementary Flux Modes at the carbon level. To illustrate the effect of our ECMs-based constraints, a Flux Variability Analysis approach was applied to a previously published metabolic network involving the main pathways in the metabolism of glucose. The addition of our ECMs-based constraints substantially reduced the under-determination resulting from a standard application of Flux Variability Analysis, which shows a clear progress over the state of the art. In addition, our approach is adjusted to deal with combinatorial explosion of ECMs in genome-scale metabolic networks. This extension was applied to infer the maximum biosynthetic capacity of non-essential amino acids in human metabolism. Finally, as linearity is the hallmark of our approach, its importance is discussed at a methodological, computational and theoretical level and illustrated with a practical application in the field of Isotope Labeling Experiments. © 2012 Elsevier Inc.
URI http://hdl.handle.net/10261/87911
DOI10.1016/j.ymben.2012.03.011
Identificadoresdoi: 10.1016/j.ymben.2012.03.011
issn: 1096-7176
e-issn: 1096-7184
Aparece en las colecciones: (IBMB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.