English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/8726
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 33 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

Autor García García, Mónica; Ustin, S. L.
Palabras clave Airborne visible-infrared imaging spectrometer (AVIRIS)
Endmembers
Linear spectral unmixing
Mediterranean grassland
Rainfall variability
Savanna
Fecha de publicación jul-2001
EditorInstitute of Electrical and Electronics Engineers
Citación IEEE Transactions on GeoScience and Remote Sensing 39(7):1480-1490 (2001)
ResumenEcosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.
Descripción 11 pages, 10 figures.
Versión del editorhttp://dx.doi.org/10.1109/36.934079
URI http://hdl.handle.net/10261/8726
DOI10.1109/36.934079
ISSN0196-2892
Aparece en las colecciones: (EEZA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Detection_Interannual_Vegetation.pdf373,8 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.