English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/8580
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 41 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Optical aberrations in the mouse eye

Autor García de la Cera, Elena; Rodríguez, Guadalupe; Llorente, Lourdes; Schaeffel, Frank; Marcos, Susana
Palabras clave Mouse eye
Optical quality
Ocular aberrations
Myopia model
Refractive state
Depth of focus
Fecha de publicación 3-mar-2006
Citación Vision Research 46(16): 2546-2553 (2006)
Resumen[Purpose] The mouse eye is a widely used model for retinal disease and has potential to become a model for myopia. Studies of retinal disease will benefit from imaging the fundus in vivo. Experimental models of myopia often rely on manipulation of the visual experience. In both cases, knowledge of the optical quality of the eye, and in particular, the retinal image quality degradation imposed by the ocular aberrations is essential. In this study, we measured the ocular aberrations in the wild type mouse.
[Methods] Twelve eyes from six four-week old black C57BL/6 wild type mice were studied. Measurements were done on awake animals, one being also measured under anesthesia for comparative purposes. Ocular aberrations were measured using a custom-built Hartmann–Shack system (using 680-nm illumination). Wave aberrations are reported up to fourth order Zernike polynomials. Spherical equivalent and astigmatism were obtained from the 2nd order Zernike terms. Modulation Transfer Functions (MTF) were estimated for the best focus, and through-focus, to estimate depth-of-focus. All reported data were for 1.5-mm pupils.
[Results] Hartmann–Shack refractions were consistently hyperopic (10.12 ± 1.41 D, mean and standard deviation) and astigmatism was present in many of the eyes (3.64 ± 3.70 D, on average). Spherical aberration was positive in all eyes (0.15 ± 0.07 μm) and coma terms RMS were significantly high compared to other Zernike terms (0.10 ± 0.03 μm). MTFs estimated from wave aberrations show a modulation of 0.4 at 2 c/deg, for best focus (and 0.15 without cancelling the measured defocus). For that spatial frequency, depth-of-focus estimated from through-focus modulation data using the Rayleigh criterion was 6 D. Aberrations in the eye of one anesthetized mouse were higher than in the same eye of the awake animal.
[Conclusions] Hyperopic refractions in the mouse eye are consistent with previous retinoscopic data. The optics of the mouse eye is far from being diffraction-limited at 1.5-mm pupil, with significant amounts of spherical aberration and coma. However, estimates of MTFs from wave aberrations are higher than previously reported using a double-pass technique, resulting in smaller depth-of-field predictions. Despite the large degradation imposed by the aberrations these are lower than the amount of aberrations typically corrected by available correction techniques (i.e., adaptive optics). On the other hand, aberrations do not seem to be the limiting factor in the mouse spatial resolution. While the mouse optics are much more degraded than in other experimental models of myopia, its tolerance to large amounts of defocus does not seem to be determined entirely by the ocular aberrations.
Descripción 8 pages, 6 figures.-- Printed version published on Aug 2006.
Versión del editorhttp://dx.doi.org/10.1016/j.visres.2006.01.011
URI http://hdl.handle.net/10261/8580
Aparece en las colecciones: (CFMAC-IO) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.