English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/8556
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism

AutorMarcos, Susana ; Rosales, Patricia; Llorente, Lourdes; Barbero, Sergio ; Jiménez-Alfaro, Ignacio
Palabras claveOcular aberrations
Crystalline lens
Intraocular lens
Fecha de publicación3-dic-2007
CitaciónVision Research 48(1): 70-79 (2008)
ResumenIt is well known that the aberrations of the cornea are partially compensated by the aberrations of the internal optics of the eye (primarily the crystalline lens) in young subjects. This effect has been found not only for the spherical aberration, but also for horizontal coma. It has been debated whether the compensation of horizontal coma is the result of passive mechanism [Artal, P., Benito, A., & Tabernero, J. (2006). The human eye is an example of robust optical design. Journal of Vision, 6 (1), 1–7] or through an active developmental feedback process [Kelly, J. E., Mihashi, T., & Howland, H. C. (2004). Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. Journal of Vision, 4 (4), 262–271]. In this study we investigate the active or passive nature of the horizontal coma compensation using eyes with artificial lenses, where no active developmental process can be present. We measured total and corneal aberrations, and lens tilt and decentration in a group of 38 eyes implanted with two types of intraocular lenses designed to compensate the corneal spherical aberration of the average population. We found that spherical aberration was compensated by 66%, and horizontal coma by 87% on average. The spherical aberration is not compensated at an individual level, but horizontal coma is compensated individually (coefficients of correlation corneal/internal aberration: −0.946, p < 0.0001). The fact that corneal (but not total) horizontal coma is highly correlated with angle lamda (computed from the shift of the 1st Purkinje image from the pupil center, for foveal fixation) indicates that the compensation arises primarily from the geometrical configuration of the eye (which generates horizontal coma of opposite signs in the cornea and internal optics). The amount and direction of tilts and misalignments of the lens are comparable to those found in young eyes, and on average tend to compensate (rather than increase) horizontal coma. Computer simulations using customized model eyes and different designs of intraocular lenses show that, while not all designs produce a compensation of horizontal coma, a wide range of aspheric biconvex designs may produce comparable compensation to that found in young eyes with crystalline lenses, over a relatively large field of view. These findings suggest that the lens shape, gradient index or foveal location do not need to be fine-tuned to achieve a compensation of horizontal coma. Our results cannot exclude a fine-tuning for the orientation of the crystalline lens, since cataract surgery seems to preserve the position of the capsule.
Descripción10 pages, 6 figures.-- Printed version published on Jan 2008.
Versión del editorhttp://dx.doi.org/10.1016/j.visres.2007.10.016
Aparece en las colecciones: (CFMAC-IO) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.