English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/84098
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorChorny, Alejo-
dc.contributor.authorAnderson, Per-
dc.contributor.authorGonzález-Rey, Elena-
dc.contributor.authorDelgado, M.-
dc.identifier.citationJournal of Immunology 180: 8369- 8377 (2008)-
dc.description.abstractSepsis, a life-threatening complication of infections and the most common cause of death in intensive care units, is characterized by a hyperactive and out-of-balance network of endogenous proinflammatory cytokines. None of the current therapies are entirely effective, illustrating the need for novel therapeutic approaches. Ghrelin (GHR) is an orexigenic peptide that has emerged as a potential endogenous anti-inflammatory factor. In this study, we show that the delayed administration of GHR protects against the mortality in various models of established endotoxemia and sepsis. The therapeutic effect of GHR is mainly mediated by decreasing the secretion of the high mobility box 1 (HMGB1), a DNA-binding factor that acts as a late inflammatory factor critical for sepsis progression. Macrophages seem to be the major cell targets in the inhibition of HMGB1 secretion, in which GHR blocked its cytoplasmic translocation. Interestingly, we also report that GHR shows a potent antibacterial activity in septic mice and in vitro. Remarkably, GHR also reduces the severity of experimental arthritis and the release of HMGB1 to serum. Therefore, by regulating crucial processes of sepsis, such as the production of early and late inflammatory mediators by macrophages and the microbial load, GHR represents a feasible therapeutic agent for this disease and other inflammatory disorders. Copyright © 2008 by The American Association of Immunologists, Inc.-
dc.publisherAmerican Association of Immunologists-
dc.titleGhrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria-
dc.description.versionPeer Reviewed-
Appears in Collections:(IPBLN) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.