English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/79438
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation

AuthorsBarranco, Violeta ; Onofre-Bustamante, E.; Escudero Rincón, María Lorenza; García-Alonso, M. C.
Issue Date2010
PublisherElsevier
CitationSurface and Coatings Technology 204: 3783-3793 (2010)
AbstractThe blasting process generates a renewed surface on the surface of metallic biomaterials with a different topography and a different chemical composition. The impact of particles on the metallic surface increases both the surface roughness and susceptibility pitting corrosion. The aim of this work is to smoothen the sharp edges of blasted Ti6Al4V alloy surfaces by means of oxidation treatment and the evaluation of their susceptibility to pitting corrosion after this thermal oxidation. Oxidation treatments were performed at 500 and 700°C for 1h on samples blasted with SiO2/ZrO2 and Al2O3 particles. Compositional, microstructural and topographical characterization of the blasted surfaces were carried out by scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX), and atomic force microscopy (AFM). The surface reactivity and corrosion behaviour of the samples were assessed by scanning Kelvin probe (SKP) and by anodic polarization curves. The susceptibility to pitting corrosion of the Ti6Al4V blasted surfaces becomes higher as roughness increases. The oxidation treatment of the Ti6Al4V blasted surfaces causes the presence of nuclei of oxides that cover the area free of particles, especially in the samples treated at 700°C, giving rise to a higher micro-nano roughness. The presence of the oxide, covering the blasted Ti6Al4V, decreases the surface reactivity leading to a lower passive current and wider pasivation region, decreasing the susceptibility to pitting corrosion. © 2010 Elsevier B.V.
URIhttp://hdl.handle.net/10261/79438
DOI10.1016/j.surfcoat.2010.04.051
Identifiersdoi: 10.1016/j.surfcoat.2010.04.051
issn: 0257-8972
Appears in Collections:(CENIM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.