English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/78975
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance

AuthorsCalvo, Rosa M. ; Escobar del Rey, Francisco; Morreale de Escobar, Gabriella ; Cerdán, Sebastián
Issue Date1995
PublisherEndocrine Society
CitationEndocrinology 136(1): 296-305 (1995)
AbstractThe effects of adult-onset hypothyroidism on the metabolic compartmentation of the cerebral tricarboxylic acid cycle and the gamma-aminobutyric acid (GABA) shunt have been investigated by 13C nuclear magnetic resonance spectroscopy. Rats thyroidectomized as adults and age-matched controls were infused in the right jugular vein with unlabeled or (1,2-13C2) acetate solutions for 60 min. At the end of the infusion, the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by 13C nuclear magnetic resonance and reverse-phase HPLC. Thyroidectomized animals showed a decrease in the incorporation of 13C from (1,2-13C2) acetate in cerebral metabolites and an increase in the concentrations of unlabeled glutamate and GABA. Computer-assisted interpretation of the 13C multiplets observed for the carbons of glutamate, glutamine, and GABA indicated that adult-onset hypothyroidism produced 1) a decrease in the contribution of infused (1,2-13C2) acetate to the glial tricarboxylic acid cycle; 2) an increase in the contribution of unlabeled acetyl-CoA to the neuronal tricarboxylic acid cycle; and 3) impairments in the exchange of glutamate, glutamine, and GABA between the neuronal and glial compartments. Despite the fact that the adult brain has often been considered metabolically unresponsive to thyroid hormone status, present results show metabolic alterations in the neuronal and glial compartments that are reversible with substitution therapy.
URIhttp://hdl.handle.net/10261/78975
DOI10.1210/en.136.1.296
Identifiersdoi: 10.1210/en.136.1.296
issn: 0013-7227
e-issn: 1945-7170
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.