English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/78753
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Prolactin induces c-Myc expression and cell survival through activation of Src/Akt pathway in lymphoid cells

AuthorsDomínguez-Cáceres, Mª Aurora; García-Martínez, José Manuel ; Calcabrini, Annarica ; González, Lorena; González-Porque, Pedro; León, Javier ; Martín-Pérez, Jorge
Issue Date2004
PublisherNature Publishing Group
CitationOncogene 23(44): 7378-7390 (2004)
AbstractStimulation of resting W53 cells (lymphoid murine cells expressing prolactin (PRL) receptor) by PRL induced expression of growth-related immediate-early genes (IEG), and proliferation through activation of the Src kinases. Since IEG are essential for cell cycle progression, we have studied how PRL controls expression of c-Myc mRNA and c-Fos. Stimulation of W53 cell proliferation by PRL required activation of MAPK, as the Mek1/2 inhibitor PD184352 eliminated Erk1/2 stimulation, cell proliferation, and expression of c-Fos mRNA. In contrast, PD184352 did not alter PRL activation of c-Myc mRNA expression or stimulation of p70S6K, Akt, and the Jak2/ Stat5 pathway. Activation of the PI3K by PRL was necessary for the expression of c-Myc mRNA and W53 cell proliferation, as the PI3K inhibitor LY294002 abolished them. However, it did not modify PRL stimulation of c-Fos mRNA expression or activation of Erk1/2 and Stat5. Furthermore, rapamycin, an inhibitor of mTOR and consequently of p70S6K, did not alter PRL stimulation of c-Myc and c-Fos mRNA expression and it had a very minor inhibitory effect on PRL stimulation of W53 cell proliferation. In addition, rapamycin did not affect PRL stimulation of Akt or Stat5. However, it reinforced PRL activation of Erk1/2. Overexpression of a constitutively activated Akt (myristoylated Akt) in W53 cells overcame the inhibitory effect of LY294002 on c-Myc expression, as well as cell death upon PRL deprivation. Consistently, inducible expression of Akt-CAAX Box in W53 cells caused inhibition of c-Myc expression. PRL stimulation of W53 cells resulted in Akt translocation to the nucleus, phosphorylation of FKHRL1 transcription factor, and its nuclear exclusion. In contrast, induced expression of Akt-CAAX Box caused inhibition of FKHRL1 phosphorylation. Furthermore, transient expression of nonphosphorylatable FKHRL1-A3 mutant impaired PRL-induced activation of the c-Myc promoter. Akt activation also resulted in phosphorylation and inhibition of glycogen synthetase kinase 3 (GSK3), which in turn promoted c-Myc stability. Consistently, treatment of W53 with selective inhibitors of GSK3 such as SB415286 and lithium salts resulted in increased levels of c-Myc. Also, overexpression of c-Myc in W53 cells overcame the decrease in cell proliferation induced by LY294002. These findings defined a PRL-signalling cascade in W53 cells, involving Src kinases/PI3K/Akt/ FKHRL1-GSK3, that mediates stimulation of c-Myc expression.
URIhttp://hdl.handle.net/10261/78753
DOIhttp://dx.doi.org/10.1038/sj.onc.1208002
Identifiersdoi: 10.1038/sj.onc.1208002
issn: 0950-9232
e-issn: 1476-5594
Appears in Collections:(IIBM) Artículos
(IBBTEC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.