English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7849
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: Evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401

AuthorsArellano, Juan B. ; Melo, Thor Bernt; Borrego, Carles M.; García-Gil, L. Jesús; Naqvi, K. Razi
green sulfur bacteria
Issue DateNov-2000
PublisherBlackwell Publishing
CitationPhotochemistry and Photobiology (2000) 72:669-675
AbstractTime-resolved, laser-induced changes in absorbance, ΔA(λ; t), have been recorded with a view to probing pigment–pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a (BChla) and several carotenoid (Car) pigments; Car-depleted chlorosomes, from cells grown in cultures containing 2-hydroxybiphenyl. Artificial aggregates were prepared by dispersing BChle in aqueous phase in the presence of monogalactosyl diglyceride. In chlorosomes ΔA(λ; t) shows, besides a signal attributable to triplet Car (with a half-life of about 4 μs), signals in the Qy regions of both BChl. The BChla signal decays at the same rate as the Car signal, which is explained by postulating that some Car are in intimate contact with some baseplate BChla pigments, and that when a ground-state Car changes into a triplet Car, the absorption spectrum of its BChla neighbors undergoes a concomitant change (termed transient environment-induced perturbation). The signal in the Qy-region of BChle behaves differently: its amplitude falls, under reducing conditions, by more than a factor of two during the first 0.5 μs (a period during which the Car signal suffers negligible diminution), and is much smaller under nonreducing conditions. The BChle signal is also attributed to transient environment-induced perturbation, but in this case the perturber is a BChle photoproduct (probably a triplet or a radical ion). The absence of long-lived BChle triplets in all three systems, and of long-lived BChla triplets in chlorosomes, indicates that BChle in densely packed assemblies is less vulnerable to photodamage than monomeric BChle and that, in chlorosome, BChla rather than BChle needs, and receives, photoprotection from an adjacent Car.
Publisher version (URL)http://www3.interscience.wiley.com/journal/119932208/abstract
Appears in Collections:(IRNASA) Artículos
Files in This Item:
File Description SizeFormat 
Arellano et al 2000.pdf212,4 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.