English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/7750
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 74 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978-2003

Autor Coll, Marta; Palomera, Isabel; Tudela, Sergi; Dowd, Michael
Palabras clave Food-web modelling
Ecopath with Ecosim
Fishing impacts
Environmental factors
Ecosystem indicators
Trend analysis
Catalan Sea
NW Mediterranean
Fecha de publicación 18-jul-2008
Citación Ecological Modelling 217(1-2): 95-116 (Sep. 2008)
ResumenAn ecosystem model representing the continental shelf and upper slope of the South Catalan Sea (NW Mediterranean) is calibrated and fitted to the available time series data from 1978 to 2003. We use a process-oriented model to explore the extent to which changes in marine resources and the ecosystem were driven by trophic interactions, environmental factors and fishing activities. Fishing effort and fishing mortality are used to drive the model, while observed (absolute and relative) biomasses and catches are compared with the predicted results. A reduction in the sum of the squared deviations of the observed and predicted values of the biomass is used as a metric for calibrating and assessing the fit of the model. A posteriori trophodynamic indicators are used to explore the ecosystem's structural and functional changes from 1978 to 2003, and a generalized least squares regression is used to assess the significance of the predicted trends. In general, a high proportion of the variability in the time series data is explained by the main trophic interactions (37–53%), fishing activities (14%), and indirectly by considering the environment (6–16%), as driving factors. The model's predictions match satisfactorily with the yearly data on the biomass for anglerfish, adult hake, demersal sharks, anchovy and mackerel, which show a statistically significant decrease over time, while the biomass of flatfish and seabirds are observed to increase. Catch data show a significant decrease in anglerfish, demersal sharks, anchovy and sardine, while there is an increase in red mullet, flatfish, juvenile hake and horse mackerel. These changes in biomass are predicted to have direct and indirect impacts on the ecosystem mediated by the trophic web, such as the proliferation of non-commercial species with lower trophic levels (e.g., benthic invertebrates) or higher turnover rates (e.g., cephalopods and benthopelagic fish). This is consistent with anecdotal information from the Mediterranean and is likely caused by trophic cascades due to the removal of demersal and pelagic higher trophic level organisms (predator release), and a decrease in small pelagic fish (competitor release).
Trophodynamic indicators suggest a degradation pattern over time: both the mean trophic level of the community (mTLco, excluding primary producers and detritus) and a modified version of Kempton's index of biodiversity decrease with time, while the total flow to detritus and the loss of production due to fishing increase from 1978 to 2003. Additionally, the demersal/pelagic ratio increases due to an overall decrease in the abundance of small pelagic fish in the ecosystem.
Descripción 22 pages.-- Supplementary data (Trend Analysis) associated with this article can be found in the online version.
Versión del editorhttp://dx.doi.org/10.1016/j.ecolmodel.2008.06.013
URI http://hdl.handle.net/10261/7750
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.