English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7750
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978-2003

AuthorsColl, Marta ; Palomera, Isabel ; Tudela, Sergi; Dowd, Michael
KeywordsFood-web modelling
Ecopath with Ecosim
Fishing impacts
Environmental factors
Ecosystem indicators
Trend analysis
Catalan Sea
NW Mediterranean
Issue Date18-Jul-2008
CitationEcological Modelling 217(1-2): 95-116 (2008)
AbstractAn ecosystem model representing the continental shelf and upper slope of the South Catalan Sea (NW Mediterranean) is calibrated and fitted to the available time series data from 1978 to 2003. We use a process-oriented model to explore the extent to which changes in marine resources and the ecosystem were driven by trophic interactions, environmental factors and fishing activities. Fishing effort and fishing mortality are used to drive the model, while observed (absolute and relative) biomasses and catches are compared with the predicted results. A reduction in the sum of the squared deviations of the observed and predicted values of the biomass is used as a metric for calibrating and assessing the fit of the model. A posteriori trophodynamic indicators are used to explore the ecosystem's structural and functional changes from 1978 to 2003, and a generalized least squares regression is used to assess the significance of the predicted trends. In general, a high proportion of the variability in the time series data is explained by the main trophic interactions (37–53%), fishing activities (14%), and indirectly by considering the environment (6–16%), as driving factors. The model's predictions match satisfactorily with the yearly data on the biomass for anglerfish, adult hake, demersal sharks, anchovy and mackerel, which show a statistically significant decrease over time, while the biomass of flatfish and seabirds are observed to increase. Catch data show a significant decrease in anglerfish, demersal sharks, anchovy and sardine, while there is an increase in red mullet, flatfish, juvenile hake and horse mackerel. These changes in biomass are predicted to have direct and indirect impacts on the ecosystem mediated by the trophic web, such as the proliferation of non-commercial species with lower trophic levels (e.g., benthic invertebrates) or higher turnover rates (e.g., cephalopods and benthopelagic fish). This is consistent with anecdotal information from the Mediterranean and is likely caused by trophic cascades due to the removal of demersal and pelagic higher trophic level organisms (predator release), and a decrease in small pelagic fish (competitor release).
Trophodynamic indicators suggest a degradation pattern over time: both the mean trophic level of the community (mTLco, excluding primary producers and detritus) and a modified version of Kempton's index of biodiversity decrease with time, while the total flow to detritus and the loss of production due to fishing increase from 1978 to 2003. Additionally, the demersal/pelagic ratio increases due to an overall decrease in the abundance of small pelagic fish in the ecosystem
Description22 pages.-- Supplementary data (Trend Analysis) associated with this article can be found in the online version
Publisher version (URL)https://doi.org/10.1016/j.ecolmodel.2008.06.013
Appears in Collections:(ICM) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.