English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/76236
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

A dominant negative mutant of PMA1 interferes with the folding of the wild type enzyme

AuthorsEraso, Pilar ; Mazón, María J. ; Portillo, Francisco
Issue Date2010
PublisherWiley-Blackwell
CitationTraffic 11(1): 37-47 (2010)
AbstractMisfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H +-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1-D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1-D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1-D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.
URIhttp://hdl.handle.net/10261/76236
DOI10.1111/j.1600-0854.2009.01005.x
Identifiersdoi: 10.1111/j.1600-0854.2009.01005.x
issn: 1398-9219
e-issn: 1600-0854
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.