English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/75180
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. × Poncirus trifoliata (L.) Raf.]

AuthorsMartínez-Cuenca, Mary-Rus; Iglesias, Domingo J.; Talón, Manuel; Abadía Bayona, Javier CSIC ORCID ; López-Millán, Ana Flor CSIC; Primo-Millo, Eduardo; Legaz, Francisco
dicarboxylate-tricarboxylate carrier
TCA enzymes
Issue DateMar-2013
PublisherOxford University Press
CitationMartínez-Cuenca MR, Iglesias DJ, Talón M, Abadía J, López-Millán AF, Primo-Millo E, Legaz F. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. × Poncirus trifoliata (L.) Raf.]. Tree Physiology 33 (3): 320-329 (2013)
AbstractThe effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.
Description10 Pags., 3 Figs., 3 Tabls.
Publisher version (URL)http://dx.doi.org/10.1093/treephys/tpt011
Appears in Collections:(EEAD) Artículos
Files in This Item:
File Description SizeFormat 
mod vers.aut pend.pdf20,83 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.