English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/7503
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 20 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Control of chaotic transients: Yorke's Game of Survival

Autor Aguirre, Jacobo; D'Ovidio, Francesco; Sanjuán, Miguel
Palabras clave [PACS] Control of chaos, applications of chaos
[PACS] Numerical simulations of chaotic systems
[PACS] Nonlinear dynamics and nonlinear dynamical systems
Fecha de publicación 20-ene-2004
EditorAmerican Physical Society
Citación Physical Review E 69, 016203 (2004)
ResumenWe consider the tent map as the prototype of a chaotic system with escapes. We show analytically that a small, bounded, but carefully chosen perturbation added to the system can trap forever an orbit close to the chaotic saddle, even in presence of noise of larger, although bounded, amplitude. This problem is focused as a two-person, mathematical game between two players called "the protagonist" and "the adversary." The protagonist's goal is to survive. He can lose but cannot win; the best he can do is survive to play another round, struggling ad infinitum. In the absence of actions by either player, the dynamics diverge, leaving a relatively safe region, and we say the protagonist loses. What makes survival difficult is that the adversary is allowed stronger "actions" than the protagonist. What makes survival possible is (i) the background dynamics (the tent map here) are chaotic and (ii) the protagonist knows the action of the adversary in choosing his response and is permitted to choose the initial point x(0) of the game. We use the "slope 3" tent map in an example of this problem. We show that it is possible for the protagonist to survive.
Descripción 5 pages, 4 figures.-- PACS nr.: 05.45.Gg, 05.45.Pq.-- PMID: 14995689 [PubMed].
Versión del editorhttp://dx.doi.org/10.1103/PhysRevE.69.016203
URI http://hdl.handle.net/10261/7503
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
article.pdfPost-print version115,53 kBAdobe PDFVista previa
yorkesgame.pdfFinal publisher version73,04 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.