English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/7473
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 93 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Conservation laws for the voter model in complex networks

Autor Suchecki, Krzysztof ; Eguíluz, Víctor M. ; San Miguel, Maxi
Palabras clave [PACS] Order-disorder transformations; statistical mechanics of model systems
[PACS] Complex systems
[PACS] Dynamics of social systems
Fecha de publicación 15-ene-2005
EditorEDP Sciences
Citación Europhysics Letters 69, 228-234 (2005)
ResumenWe consider the voter model dynamics in random networks with an arbitrary distribution of the degree of the nodes. We find that for the usual node-update dynamics the average magnetization is not conserved, while an average magnetization weighted by the degree of the node is conserved. However, for a link-update dynamics the average magnetization is still conserved. For the particular case of a Barabasi-Albert scale-free network the voter model dynamics leads to a partially ordered metastable state with a finite size survival time. This characteristic time scales linearly with system size only when the updating rule respects the conservation law of the average magnetization. This scaling identifies a universal or generic property of the voter model dynamics associated with the conservation law of the magnetization.
Descripción 7 pages, 4 figures.-- PACS nrs.: 64.60.Cn, 89.75.-k, 87.23.Ge.-- Pre-print version available at ArXiv: http://arxiv.org/abs/cond-mat/0408101.
Versión del editorhttp://dx.doi.org/10.1209/epl/i2004-10329-8
URI http://hdl.handle.net/10261/7473
DOI10.1209/epl/i2004-10329-8
ISSN0295-5075
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
EPL.pdf122,79 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.