English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/7469
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 35 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots

AutorPuente, Antonio; Serra, Llorenç ; Nazmitdinov, Rashid G.
Palabras clave[PACS] Quantum dots
[PACS] Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems
Fecha de publicación18-mar-2004
EditorAmerican Physical Society
CitaciónPhysical Review B 69, 125315 (1-9) (2004)
ResumenWe provide a quantitative determination of the crystallization onset for two electrons in a parabolic two-dimensional confinement. This system is shown to be well described by a roto-vibrational model, Wigner crystallization occurring when the rotational motion gets decoupled from the vibrational one. The Wigner molecule thus formed is characterized by its moment of inertia and by the corresponding sequence of rotational excited states. The role of a vertical magnetic field is also considered. Additional support to the analysis is given by the Hartree-Fock phase diagram for the ground state and by the random-phase approximation for the moment of inertia and vibron excitations.
Descripción9 pages (final publisher version), 10 pages, 8 figures (attached post-print version).-- PACS nrs.: 73.21.La, 73.21.-b.-- Pre-print version available at ArXiv: http://arxiv.org/abs/cond-mat/0308430.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevB.69.125315
URIhttp://hdl.handle.net/10261/7469
DOI10.1103/PhysRevB.69.125315
ISSN1098-0121
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Roto_vibrational_spectrum.pdf588,41 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.