English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7456
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing

AuthorsMayol, Catalina; Toral, Raúl ; Mirasso, Claudio R.
Keywords[PACS] Stochastic analysis methods (Fokker-Planck, Langevin, etc.)
[PACS] Function theory, Analysis: Approximations and expansions
[PACS] Noise
Issue Date24-Jun-2004
CitationPhysical Review E 69, 066141 (1-6) (2004)
AbstractBy using a generalization of the multiple scales technique we develop a method to derive amplitude equations for zero-dimensional forced systems. The method allows to consider either additive or multiplicative forcing terms and can be straightforwardly applied to the case that the forcing is white noise. We give examples of the use of this method to the case of the van der Pol–Duffing oscillator. The writing of the amplitude equations in terms of a Lyapunov potential allow us to obtain an analytical expression for the probability distribution function which reproduces reasonably well the numerical simulation results.
Description6 pages.-- PACS nrs.: 05.10.Gg, 02.30.Mv, 05.40.Ca.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0312077v1.-- ©2004 The American Physical Society
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevE.69.066141
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
PhysRevE_69_066141.pdf101,54 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.