English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7453
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Rare Events and Scale-Invariant Dynamics of Perturbations in Delayed Chaotic Systems

AuthorsSánchez, Alejandro D.; López, Juan M. ; Rodríguez, Miguel A. ; Matías, Manuel A.
KeywordsStatistical Mechanics
Chaotic Dynamics
Issue Date21-May-2004
PublisherAmerican Physical Society
CitationPhysical Review Letters 92, 204101 (1-4) (2004)
AbstractWe study the dynamics of perturbations in time delayed dynamical systems. Using a suitable space-time coordinate transformation, we find that the time evolution of the linearized perturbations (Lyapunov vector) can be mapped to the linear Zhang surface growth model [Y.-C. Zhang, J. Phys. France 51, 5129 (1990)], which is known to describe surface roughening driven by power-law distributed noise. As a consequence, Lyapunov vector dynamics is dominated by rare random events that lead to non-Gaussian fluctuations and multiscaling properties.
Description4 pages.-- PACS nrs.: 05.45.Jn, 05.40.–a, 89.75.Da.-- ArXiv pre-print: http://arxiv.org/abs/cond-mat/0307057
Appears in Collections:(IFCA) Artículos
(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
PRL04101.pdfPublished version143,37 kBAdobe PDFThumbnail
0307057.pdfArXiv pre-print184,69 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.