Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/74420
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Dynamics of the D + + H 2 and H + + D 2 reactions: A detailed comparison between theory and experiment

AutorJambrina, P.G.; Alvariño, José M.; Gerlich, Daniel; Hankel, M.; Herrero, Víctor J. CSIC ORCID; Sáez Rábanos, Vicente; Aoiz, F. Javier CSIC ORCID
Fecha de publicación2012
EditorRoyal Society of Chemistry (UK)
CitaciónPhysical Chemistry Chemical Physics 14: 3346- 3359 (2012)
ResumenAn extensive set of experimental measurements on the dynamics of the H + + D 2 and D + + H 2 ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E T, thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D + ions reactively scattered in H + + D 2 collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a Gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E T < 0.6 eV and E T < 0.2 eV for the H + + D 2 and D + + H 2 reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H + + D 2 for E T ≤ 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined. © Royal Society of Chemistry
URIhttp://hdl.handle.net/10261/74420
DOI10.1039/c2cp23479c
Identificadoresdoi: 10.1039/c2cp23479c
issn: 1463-9076
Aparece en las colecciones: (CFMAC-IEM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Jambrina2.pdf3,72 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

33
checked on 25-mar-2024

WEB OF SCIENCETM
Citations

33
checked on 27-feb-2024

Page view(s)

308
checked on 28-mar-2024

Download(s)

313
checked on 28-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.