English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7414
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Molecular basis for a lack of correlation between viral fitness and cell killing capacity

AuthorsHerrera, Mónica; García Arriaza, Juan Francisco; Pariente, Nonia; Escarmís, Cristina; Domingo, Esteban
Keywordsviral fitness
Issue Date13-Apr-2007
PublisherPublic Library of Science
CitationPLoS Pathog 3(4): e53 (2007)
Abstract[Abstract] The relationship between parasite fitness and virulence has been the object of experimental and theoretical studies often with conflicting conclusions. Here, we provide direct experimental evidence that viral fitness and virulence, both measured in the same biological environment provided by host cells in culture, can be two unrelated traits. A biological clone of foot-and-mouth disease virus acquired high fitness and virulence (cell killing capacity) upon large population passages in cell culture. However, subsequent plaque-to-plaque transfers resulted in profound fitness loss, but only a minimal decrease of virulence. While fitness-decreasing mutations have been mapped throughout the genome, virulence determinants—studied here with mutant and chimeric viruses—were multigenic, but concentrated on some genomic regions. Therefore, we propose a model in which viral virulence is more robust to mutation than viral fitness. As a consequence, depending on the passage regime, viral fitness and virulence can follow different evolutionary trajectories. This lack of correlation is relevant to current models of attenuation and virulence in that virus de-adaptation need not entail a decrease of virulence.
[Author Summary] Virulence expresses the harm that parasites inflict upon their hosts. Many studies have addressed the basis of virulence and its effect on host and parasite survival. It has generally been accepted that one of the components of parasite virulence is fitness, or the capacity of the parasite to multiply in its host. Some models have equated virulence with fitness. In the present study, we use foot-and-mouth disease virus (FMDV) to document that virulence and fitness—measured in the same biological environment provided by cells in culture—can be unrelated traits. This has been achieved by multiplying the virus in a manner that mutations accumulated in its genome. Mutations decreased fitness dramatically, but not virulence. Chimeric and mutant viruses were constructed to show that virulence is influenced by only some of the FMDV genes, while fitness is influenced by the entire genome. For this reason, virulence is more robust (“resistant”) than fitness to the effects of deleterious mutations. The fact that virulence can be unrelated to fitness has implications for the design of anti-viral vaccines because it suggests that it may be possible to design high fitness, low virulence strains to stimulate the host immune response. Furthermore, in modelling studies it cannot be assumed that virulence is equal to fitness
Publisher version (URL)http://dx.doi.org/10.1371/journal.ppat.0030053
URIhttp://hdl.handle.net/10261/7414
DOI10.1371/journal.ppat.0030053
ISSN1553-7374 (online)
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
EDomingo_PLoSPathogens_e53.pdf571,74 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.