English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7389
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Dynamical and structural aspects of the cold crystallization of poly(dimethylsiloxane) (PDMS)

AuthorsLund, Reidar; Alegría, Ángel ; Goitiandia, Luis; Colmenero de León, Juan ; González, Miguel A.; Lindner, Peter
KeywordsExperimental study
Temperature effect
Segmental movement
Dielectric relaxation
Isothermal crystallization
Dimethylsiloxane polymer
Issue Date26-Jan-2008
PublisherAmerican Chemical Society
CitationMacromolecules 41(4): 1364-1376 (2008).
AbstractA detailed study of the dynamical and structural aspects of the cold crystallization behavior of highly flexible poly(dimethylsiloxane)(PDMS) is presented. In order to understand the complete behavior, before, under and after crystallization, a wide range of experimental techniques have been employed. A particular emphasis is made on the interplay between dynamical and structural effects and how the properties of the amorphous phase evolve during the crystallization. This is highlighted by combining mobility sensitive techniques, involving broadband dielectric spectroscopy (BDS) and differential scanning calorimetry, with neutron scattering: wide and small-angle neutron scattering (WANS/SANS) which are sensitive to the relative ordering of the atoms. In this way, we are able to compare the structure associated with crystal formation with the evolution and modification of the amorphous phase. The kinetics deduced from WANS points toward a classical nucleation and growth behavior closely following a Avrami-like growth with an exponent of about n = 3 which is expected for athermal nucleation from fixed centers followed by three-dimensional crystal growth. Furthermore, the amorphous phase (deduced from BDS) decays in parallel with the emergence of the crystalline phase (from WANS/SANS) without any shift in the characteristic relaxation time. However a careful comparison of the crystallization at short times indicates that the amorphous phase seems to be affected before any measurable crystallization is detected by WANS. Although this might be compatible with the existence of mesomorphic phase, it may also be attributed to more simple precursors as initial crystalline "baby-like" nuclei. In this picture, these crystalline nuclei may be formed homogeneously in the system which in turn causes a constraint on the surrounding chains connected to these crystalline nuclei. This is manifested as a distinct relaxation contribution that is drastically slower and heterogeneous than the conventional amorphous -relaxation of the melt. It would also explain a signal in SANS before any accompanying crystallization signal in WANS. Once the crystal starts developing, the fraction of the slower amorphous phase (constrained amorphous phase, CAP) grows and the conventional amorphous phase gradually disappears. At the very end the growing crystalline fronts start to overlap and some of the remaining CAP becomes even more constrained due to cross-link strongly manifested in both the dielectric response and the heat capacity.
Description13 pages.
Publisher version (URL)http://dx.doi.org/10.1021/ma702055b
Appears in Collections:(CFM) Artículos
(ICMA) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.