English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/7228
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : A vision-based method for weeks identification through the Bayesian decision theory
Autor : Tellaeche, A.; Burgos Artizzu, Xavier P. ; Pajares, Gonzalo; Ribeiro Seijas, Ángela
Palabras clave : Bayesian estimation
Parzen's window
Decision making
Machine vision
Image segmentation
Weed identification
Precision agriculture
Fecha de publicación : 2008
Editor: Elsevier
Citación : Pattern Recognition 41 (2008) 521-530
Resumen: Abstract: One of the objectives of precision agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. This paper outlines an automatic computer vision-based approach for the detection and differential spraying of weeds in corn crops. The method is designed for post-emergence herbicide applications where weeds and corn plants display similar spectral signatures and the weeds appear irregularly distributed within the crop’s field. The proposed strategy involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based measuring relationships between crop and weeds. The decision making determines the cells to be sprayed based on the computation of a posterior probability under a Bayesian framework. The a priori probability in this framework is computed taking into account the dynamic of the physical system (tractor) where the method is embedded. The main contributions of this paper are: (1) the combination of the image segmentation and decision making processes and (2) the decision making itself which exploits a previous knowledge which is mapped as the a priori probability. The performance of the method is illustrated by comparative analysis against some existing strategies.
URI : http://hdl.handle.net/10261/7228
ISSN: 0031-3203
Aparece en las colecciones: (IAI) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.