English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6635
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Teoría de errores de observación
Autor : Sevilla, Miguel J.
Palabras clave : Teoría de errores de observación
Fecha de publicación : 1993
Editor: CSIC-UCM - Instituto de Astronomía y Geodesia (IAG)
Citación : Física de la Tierra, Núm. 5. 133-166. Publicación. Instituto de Astronomía y Geodesia. 1993, nº 186.
Resumen: En Astronomía y en Geodesia, como en las restantes ciencias experimentales, se opera con frecuencia con valores numéricos obtenidos por observación y medida. Estos valores, por muy cuidadosa que sea la observación y por muy grande que sea la precisión de los aparatos empleados, vienen siempre afectados por un conjunto de errores que no en todos los casos es posible determinar, y que son debidos a varias causas de muy diversa naturaleza: deficiencias de los aparatos de observación, variación de las condiciones ambientales, defectos de los sentidos o distracciones del observador, etc, etc. Si se repite un cierto número de veces una observación en la que se trata de determinar el valor de una magnitud, efectuando todas las observaciones con los mísmos métodos y aparatos y con en máximo esmero posible, se obtendrán en general resultados distintos en las distintas observaciones. (En realidad esta discordancia depende en cierto modo de la precisión que se quiera obtener pues, por ejemplo, si se realiza una serie de medidas de un mismo ángulo solamente con la aproximación del grado puede ocurrir que varias de ellas coincidan; esto difícilmente sucedería si se pretendiesen aproximaciones del orden del segundo o fracción de éste). Se presenta así el problema de definir, partiendo de estos datos de observación, cual ha de tomarse como valor de la magnitud medida, el que se llamará valor más probable, de modo que el error cometido al tomar dicho valor más probable como medida de la magnitud en cuestión sea el menor posible. Y adoptando ya este valor más probable interesa conocer el grado de precisión con que se han efectuado las observaciones, y la aproximación con que aquel representa la magnitud medida.
URI : http://hdl.handle.net/10261/6635
ISBN : 1988-2440 (Online)
ISSN: 0214-4557 (Print-UCM) 0213-6198 (Print-IAG-CSIC-UCM)
Aparece en las colecciones: (IAG) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
errores.pdf2,26 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.