English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/65209
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

An analysis of the methyl rotation dynamics in the S0 (X̃ 1A1) and T1 (ã 3A2) states of thioacetone, (CH3)2 CS and (CD 3)2 CS from pyrolysis jet spectra

AuthorsMoule, D. C.; Smeyers, Y. G.; Senent, María Luisa ; Clouthier, D. J.; Karolczak, J.; Judge, R. H.
Issue Date1991
PublisherAmerican Institute of Physics
CitationJournal of Chemical Physics 95: 3137-3146 (1991)
AbstractJet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetone (CH3)2CS/(CD3)2 CS have been recorded over the region 16 800-18 500 cm-1 using the pyrolysis jet spectroscopic technique. The responsible electronic transition, T 1 ←-S0, ã 3 A ″ ← X̃ 1A1, results from an n → π* electron promotion and gives rise to a pattern of vibronic bands that were attributed to activity of the methyl torsion and the sulphur out-of-plane wagging modes. The intensities of the torsional and wagging progressions in the excitation spectra were interpreted in terms of a C2υ-Cs molecular distortion of the triplet molecule from its singlet ground state equilibrium structure. A complete unrestricted Hartree-Fock (UHF) ab initio molecular orbital (MO) structural optimization of the T1 state predicted that the sulphur was displaced by 27.36° from the molecular plane and the methyl groups were rotated by 10.93° in clockwise-counterclockwise directions. Restricted Hartree-Fock (RHF) calculations were used to generate the F(θ1,θ2) potential surface governing methyl rotation for the S0 state. This was incorporated into a two-dimensional Hamiltonian, symmetrized for the G36 point group and solved variationally for the torsional frequencies. The calculated frequencies of 159.97/118.94 for the ν17 (b1) mode of S0 (CH3)2CS/(CD3)2 CS were found to agree with the experimental values, 153.2/114.7 cm-1. © 1991 American Institute of Physics.
URIhttp://hdl.handle.net/10261/65209
DOIhttp://dx.doi.org/10.1063/1.460871
Identifiersdoi: 10.1063/1.460871
issn: 0021-9606
Appears in Collections:(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
Moule.pdf981,03 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.