English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/64221
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Diagenesis of a drapery speleothem from Castañar Cave: from dissolution to dolomitization

AuthorsMartín-Pérez, Andrea; Martín-García, Rebeca ; Alonso-Zarza, Ana María
KeywordsDiagenesis
Speleothems
Corrosion
Aragonite-calcite
Dolomitization
Issue DateJul-2012
PublisherInternational Union of Speleology
CitationMartín-Pérez A., Martín-García R. and Alonso-Zarza A.M. 2012. Diagenesis of a drapery speleothem from Castañar Cave: from dissolution to dolomitization. International Journal of Speleology, 41(2), 251-266. Tampa, FL (USA). ISSN 0392-6672. http://dx.doi.org/10.5038/1827-806X.41.2.11
AbstractA drapery speleothem (DRA-1) from Castañar Cave in Spain was subjected to a detailed petrographical study in order to identify its primary and diagenetic features. The drapery’s present day characteristics are the result of the combined effects of the primary and diagenetic processes that DRA-1 underwent. Its primary minerals are calcite, aragonite and huntite. Calcite is the main constituent of the speleothem, whereas aragonite forms as frostwork over the calcite. Huntite is the main mineral of moonmilk which covers the tips of aragonite. These primary minerals have undergone a set of diagenetic processes, which include: 1) partial dissolution or corrosion that produces the formation of powdery matt-white coatings on the surface of the speleothem. These are seen under the microscope as dark and highly porous microcrystalline aggregates; 2) total dissolution produces pores of few cm2 in size; 3) calcitization and dolomitization of aragonite result in the thickening and lost of shine of the aragonite fibres. Microscopically, calcitization is seen as rhombohedral crystals which cover and replace aragonite forming mosaics that preserve relics of aragonite precursor. Dolomitization results in the formation of microcrystalline rounded aggregates over aragonite fibres. These aggregates are formed by dolomite crystals of around 1 μm size. The sequence of diagenetic processes follows two main pathways. Pathway 1 is driven by the increase of saturation degree and Mg/Ca ratio of the karstic waters and is visible in the NW side of the drapery. This sequence of processes includes: 1) aragonite and huntite primary precipitation and 2) dolomitization. Pathway 2 is driven by a decrease in the degree of saturation of calcite and aragonite and Mg/Ca ratio of the cave waters, and it is observed in the SE side of the drapery. The diagenetic processes of the second pathway include: 1) calcitization of aragonite; 2) incomplete dissolution (micritization) of both aragonite and calcite; 3) total dissolution. This study highlights the importance of diagenetic processes on speleothems and their complexity. The correct interpretation of these processes is crucial for the understanding of possible changes in the chemistry of waters, temperature, or pCO2 and so is critical to the correct interpretation of the paleoenvironmental significance of speleothems.
Publisher version (URL)http://dx.doi.org/10.5038/1827-806X.41.2.11
URIhttp://hdl.handle.net/10261/64221
DOI10.5038/1827-806X.41.2.11
ISSN0392-6672
Appears in Collections:(IGEO) Artículos
Files in This Item:
File Description SizeFormat 
IJS_2012_41_2_251.pdf8,16 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.