English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/64160
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na +/H + antiporter

AuthorsNúñez-Ramírez, R.; Sánchez-Barrena, María José ; Villalta, Irene ; Vega Borrego, Juan Francisco; Pardo, José M. ; Quintero, Francisco J. ; Martínez-Salazar, Javier ; Albert, Armando
Issue Date2012
PublisherAcademic Press
CitationJournal of Molecular Biology 424(5): 283-294 (2012)
AbstractThe Arabidopsis thaliana Na +/H + antiporter salt-overly-sensitive 1 (SOS1) is essential to maintain low intracellular levels of toxic Na + under salt stress. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety, indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single-particle reconstruction of negatively stained full-length and active SOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family and an elongated, large, and structured cytosolic domain. Both the transmembrane (TM) and cytosolic moieties contribute to the dimerization of the antiporter. The close contacts between the TM and the cytosolic domains provide a link between regulation and transport activity of the antiporter.
URIhttp://hdl.handle.net/10261/64160
DOI10.1016/j.jmb.2012.09.015
Identifiersdoi: 10.1016/j.jmb.2012.09.015
issn: 0022-2836
Appears in Collections:(IRNAS) Artículos
(IQFR) Artículos
(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
Structural insights.pdf510,28 kBAdobe PDFThumbnail
View/Open
Núñez_et_al_suppl-2.pdf950,15 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.