English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/64026
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorBerriel-Valdós, L. R.-
dc.contributor.authorGonzalo, C.-
dc.contributor.authorBescós, J.-
dc.date.accessioned2013-01-11T11:29:12Z-
dc.date.available2013-01-11T11:29:12Z-
dc.date.issued1988-
dc.identifierdoi: 10.1016/0030-4018(88)90228-3-
dc.identifierissn: 0030-4018-
dc.identifier.citationOptics Communications 68: 339-344 (1988)-
dc.identifier.urihttp://hdl.handle.net/10261/64026-
dc.description.abstractUsually a Fast Fourier Transform algorithm (FFT) is applied to calculate the Discrete Wigner Distribution Function (DWDF). In this paper it is proposed to use the Discrete Hartley Transform (DHT) to obtain the DWDF, because of the advantages of the Fast Hartley Transform algorithm versus the FFT. The Hartley Transform not only decreases the computer time of the WDF but also simplifies the convolution of two WDFs. This fact is used here to simulate a blurred image and its restoration. © 1988.-
dc.description.sponsorshipThis work was partially supported by the Spanish Advisory Commission for Scientific and Technical Research under Grant No. 358. We also thank Ana Plaza and Manuel Perez for their collaboration in the general development of the work.-
dc.language.isoeng-
dc.publisherElsevier-
dc.rightsclosedAccess-
dc.titleComputation of the Wigner distribution function by the Hartley transform. Application to image restoration-
dc.typeartículo-
dc.identifier.doi10.1016/0030-4018(88)90228-3-
dc.date.updated2013-01-11T11:29:12Z-
dc.description.versionPeer Reviewed-
Appears in Collections:(CFMAC-IO) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.