English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/63067
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Structural determinants for the biological activity of Vav proteins

AuthorsZugaza, José L.; López-Lago, Miguel A.; Caloca, María J. ; Dosil, Mercedes ; Movilla, Nieves; Bustelo, Xosé R.
Issue Date2002
PublisherAmerican Society for Biochemistry and Molecular Biology
CitationJournal of Biological Chemistry 277(47): 45377-45392 (2002)
AbstractWe have used an extensive mutagenesis approach to study the specific role of the eight structural domains of Vav during both the activation and signaling steps of this Rac1 exchange factor. Our results indicate that several Vav domains (Dbl homology, pleckstrin homology, and zinc finger) are essential for all the biological activities tested, whereas others are required for discrete, cell type-specific biological effects. Interestingly, we have found that Vav domains have no unique functions. Thus, the calponin homology domain mediates the inhibition of Vav both in vitro and in vivo but, at the same time, exerts effector functions in lymphocytes upon receptor activation. The Vav SH2 and SH3 regions play regulatory roles in the activation of Vav in fibroblasts, mediating both its phosphorylation and translocation to the plasma membrane. In contrast, the Vav SH2 and SH3 regions act as scaffolding platforms in T-cells, ensuring the proper phosphorylation of Vav and the subsequent engagement of downstream effectors. We also provide evidence indicating that the zinc finger region exerts at least three different functional roles in Vav, aiding in the down-regulation of its basal activity, the engagement of substrates, and the induction of ancillary pathways required for cell transformation. Finally, the results obtained are consistent with a new regulatory model for Vav, in which the calponin homology region inhibits the basal activity of Vav through interactions with the zinc finger region.
URIhttp://hdl.handle.net/10261/63067
DOI10.1074/jbc.M208039200
Identifiersdoi: 10.1074/jbc.M208039200
issn: 0021-9258
e-issn: 1083-351X
Appears in Collections:(IBMCC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.