English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/62283
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Oxygen-evolving extrinsic proteins (PsbO,P,Q,R): Bioinformatic and functional analysis

AuthorsDe Las Rivas, Javier ; Heredia, Pedro; Román, Ángel C.
Issue Date2007
CitationBBA - Bioenergetics 1767(6): 575-582 (2007)
AbstractThe water-splitting and oxygen-evolving (OE) reaction is carried out by a large multisubunit protein complex, Photosystem II (PSII), that has two distinct regions: a membrane intrinsic-region that includes most of the PSII subunits and a lumenal extrinsic-region that is in close association to the manganese catalytic center. The recently determined PSII 3D structures from cyanobacteria provide a considerable amount of new knowledge about the OE architecture (K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science 303 (2004) 1831-1838; B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044). Most of the intrinsic core PSII polypeptides have been well conserved through evolution from ancient cyanobacteria to modern plants, keeping the essence of PSII light driven reactions from prokaryotes to eukaryotes; but what is striking is the large number of changes that have occurred in the oxygen-evolving extrinsic proteins (OEEp) associated to PSII lumenal side. For unknown reasons plant PSII has required the >invention> of three OEEps: PsbP (23 kDa), PsbQ (16 kDa) and PsbR (10 kDa); associated to the ubiquitous OEEp PsbO (33 kDa). This set of proteins seems to be required in plants for the full activity and stability of the OE center in vivo, but their specific function is not clear. In this paper, bioinformatics and functional data show that the OEEps present in plants and green algae are very distinct from their prokaryotic counterparts. Moreover, clear differences are found for PsbQ from higher plants and green algae; and a relationship has been found between PsbR and the Mn cluster. © 2007 Elsevier B.V. All rights reserved.
Identifiersdoi: 10.1016/j.bbabio.2007.01.018
issn: 0005-2728
Appears in Collections:(IBMCC) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.