English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6210
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Zero-lag long-range synchronization of Hodgkin-Huxley neurons is enhanced by dynamical relaying

AutorVicente, Raúl; Pipa, Gordon; Fischer, Ingo ; Mirasso, Claudio R.
Palabras claveZero-Lag Synchronization
Neuronal model
Synchronized dynamical states
Dynamical relaying
Fecha de publicación6-jul-2007
EditorBioMed Central
CitaciónBMC Neuroscience 2007, 8(Suppl 2): P42
Resumen[Background] The synchrony hypothesis postulates that precise temporal synchronization of different pools of neurons conveys information that is not contained in their firing rates. The synchrony hypothesis had been supported by experimental findings demonstrating that millisecond precise synchrony of neuronal oscillations across well separated brain regions plays an essential role in visual perception and other higher cognitive tasks. Albeit, more evidence is being accumulated in favour of its role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear.
Here we propose a simple network motif that naturally accounts for zero-lag synchronization for a wide range of temporal delays [3]. We demonstrate that zero-lag synchronization between two distant neurons or neural populations can be achieved by relaying the dynamics via a third mediating single neuron or population.
[Methods] We simulated the dynamics of two Hodgkin-Huxley neurons that interact with each other via an intermediate third neuron. The synaptic coupling was mediated through α-functions. Individual temporal delays of the arrival of pre-synaptic potentials were modelled by a gamma distribution. The strength of the synchronization and the phase-difference between each individual pairs were derived by cross-correlation of the membrane potentials.
[Results] In the regular spiking regime the two outer neurons consistently synchronize with zero phase lag irrespective of the initial conditions. This robust zero-lag synchronization naturally arises as a consequence of the relay and redistribution of the dynamics performed by the central neuron. This result is independent on whether the coupling is excitatory or inhibitory and can be maintained for arbitrarily long time delays (see Fig 1).
[Conclusion] We have presented a simple and extremely robust network motif able to account for the isochronous synchronization of distant neural elements in a natural way. As opposed to other possible mechanisms of neural synchronization, neither inhibitory coupling, gap junctions nor precise tuning of morphological parameters are required to obtain zero-lag synchronized neuronal oscillation.
DescripciónPoster presentation, Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 Toronto, Canada. 7–12 July 2007.-- Meeting proceedings published in BMC Neuroscience supplement: "Sixteenth Annual Computational Neuroscience Meeting: CNS*2007", http://www.biomedcentral.com/bmcneurosci/8?issue=S2.
Aparece en las colecciones: (IFISC) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Poster_Vicente.pdf201,97 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.