Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/6210
Share/Export:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Zero-lag long-range synchronization of Hodgkin-Huxley neurons is enhanced by dynamical relaying

AuthorsVicente, Raúl; Pipa, Gordon; Fischer, Ingo CSIC ORCID ; Mirasso, Claudio R. CSIC ORCID
KeywordsZero-Lag Synchronization
Neuronal model
Synchronized dynamical states
Dynamical relaying
Issue Date6-Jul-2007
PublisherBioMed Central
CitationBMC Neuroscience 2007, 8(Suppl 2): P42
Abstract[Background] The synchrony hypothesis postulates that precise temporal synchronization of different pools of neurons conveys information that is not contained in their firing rates. The synchrony hypothesis had been supported by experimental findings demonstrating that millisecond precise synchrony of neuronal oscillations across well separated brain regions plays an essential role in visual perception and other higher cognitive tasks. Albeit, more evidence is being accumulated in favour of its role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear.
Here we propose a simple network motif that naturally accounts for zero-lag synchronization for a wide range of temporal delays [3]. We demonstrate that zero-lag synchronization between two distant neurons or neural populations can be achieved by relaying the dynamics via a third mediating single neuron or population.
[Methods] We simulated the dynamics of two Hodgkin-Huxley neurons that interact with each other via an intermediate third neuron. The synaptic coupling was mediated through α-functions. Individual temporal delays of the arrival of pre-synaptic potentials were modelled by a gamma distribution. The strength of the synchronization and the phase-difference between each individual pairs were derived by cross-correlation of the membrane potentials.
[Results] In the regular spiking regime the two outer neurons consistently synchronize with zero phase lag irrespective of the initial conditions. This robust zero-lag synchronization naturally arises as a consequence of the relay and redistribution of the dynamics performed by the central neuron. This result is independent on whether the coupling is excitatory or inhibitory and can be maintained for arbitrarily long time delays (see Fig 1).
[Conclusion] We have presented a simple and extremely robust network motif able to account for the isochronous synchronization of distant neural elements in a natural way. As opposed to other possible mechanisms of neural synchronization, neither inhibitory coupling, gap junctions nor precise tuning of morphological parameters are required to obtain zero-lag synchronized neuronal oscillation.
DescriptionPoster presentation, Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 Toronto, Canada. 7–12 July 2007.-- Meeting proceedings published in BMC Neuroscience supplement: "Sixteenth Annual Computational Neuroscience Meeting: CNS*2007", http://www.biomedcentral.com/bmcneurosci/8?issue=S2.
URIhttp://hdl.handle.net/10261/6210
DOI10.1186/1471-2202-8-S2-P42
ISSN1471-2202
Appears in Collections:(IFISC) Comunicaciones congresos

Files in This Item:
File Description SizeFormat
Poster_Vicente.pdf201,97 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

Page view(s)

334
checked on May 23, 2022

Download(s)

190
checked on May 23, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.