English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6156
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 9 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Initial growth of Boltzmann entropy and chaos in a large assembly of weakly interacting systems
Autor : Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Rondoni, Lamberto; Vulpiani, Angelo
Palabras clave : Boltzmann entropy
Chaotic dynamics
Fecha de publicación : 1-nov-2007
Editor: Elsevier
Citación : Physica A 385, 170-184 (2007)
Resumen: We introduce a high-dimensional symplectic map, modeling a large system, to analyze the interplay between single-particle chaotic dynamics and particles interactions in thermodynamic systems. We study the initial growth of the Boltzmann entropy, SB, as a function of the coarse-graining resolution (the late stage of the evolution is trivial, as the system is subjected to no external drivings). We show that a characteristic scale emerges, and that the behavior of SB vs t, at variance with the Gibbs entropy, does not depend on the resolution, as far as it is finer than this scale. The interaction among particles is crucial to achieve this result, while the rate of entropy growth, in its early stage, depends essentially on the single-particle chaotic dynamics. It is possible to interpret the basic features of the dynamics in terms of a suitable Markov approximation.
Descripción : 15 pages.-- PACS numbers: 05.45.−a; 05.60.−k; 05.45.Jn.-- Final full-text version of the paper available at: http://dx.doi.org/10.1016/j.physa.2007.06.036.
URI : http://hdl.handle.net/10261/6156
DOI: 10.1016/j.physa.2007.06.036
ISSN: 0378-4371
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.