English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6146
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 21 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Phase-space structure of two-dimensional excitable localized structures
Autor : Gomila, Damià ; Jacobo, Adrián ; Matías, Manuel A. ; Colet, Pere
Palabras clave : Optical Kerr effect
Optical solitons
Fecha de publicación : 28-feb-2007
Editor: American Physical Society
Citación : Physical Review E 75, 026217 (2007)
Resumen: In this work we characterize in detail the bifurcation leading to an excitable regime mediated by localized structures in a dissipative nonlinear Kerr cavity with a homogeneous pump. Here we show how the route can be understood through a planar dynamical system in which a limit cycle becomes the homoclinic orbit of a saddle point (saddle-loop bifurcation). The whole picture is unveiled, and the mechanism by which this reduction occurs from the full infinite-dimensional dynamical system is studied. Finally, it is shown that the instability leads to a excitability regime, under the application of suitable perturbations. Excitability is an emergent property for this system, as it emerges from the spatial dependence since the system does not exhibit any excitable behavior locally.
Descripción : 10 pages.-- PACS numbers: 05.45.-a, 42.65.Sf, 89.75.Fb.-- ArXiv pre-print: http://arxiv.org/abs/nlin.PS/0703011.-- Final full-text version of the paper available at: http://dx.doi.org/10.1103/PhysRevE.75.026217.
URI : http://hdl.handle.net/10261/6146
DOI: 10.1103/PhysRevE.75.026217
ISSN: 1539-3755
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PhysRevE_75_026217.pdf285,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.