English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6124
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 10 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Convective instability induced by two-points nonlocality
Autor : Zambrini, Roberta ; Papoff, Francesco
Palabras clave : Optical feedback
Nonlinear optics
Noise (statistical physics)
Patterns
Fecha de publicación : 23-ene-2006
Editor: American Physical Society
Citación : Physical Review E 73, 016611 (2006)
Resumen: We consider diffusive nonlinear systems with nonlocal two-points coupling, generally induced by misalignment in optical feedback. We expand the stability analysis in F. Papoff and R. Zambrini, Phys. Rev. Lett. 94, 243903 (2005) to determine convective and absolute thresholds. Nonlocality leads to different effects in comparison to well-known problems with drift, as the existence of opposite phase and group velocities for some modes and an instability region. The theoretical predictions are in agreement with numerical results in a nonlocal system with saturable nonlinearity over wide parameter regions. The knowledge of the stability diagram for any uniform state allows us to interpret the rich dynamics due to the interplay between finite size, noise, and multiple states.
Descripción : 11 pages.-- PACS numbers: 42.65.Sf, 05.40.Ca, 89.75.Kd.-- Final full-text version of the paper available at: http://dx.doi.org/10.1103/PhysRevE.73.016611.
URI : http://hdl.handle.net/10261/6124
DOI: 10.1103/PhysRevE.73.016611
ISSN: 1539-3755
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PhysRevE_73_016611.pdf927,14 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.