English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6123
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 6 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Macroscopic description of particle systems with non-local density-dependent diffusivity.
Autor : López, Cristóbal
Palabras clave : Diffusion
Brownian motion
Discrete time systems
Density
Fecha de publicación : 20-jul-2006
Editor: American Physical Society
Citación : Physical Review E 74, 012102 (2006)
Resumen: In this paper we study macroscopic density equations in which the diffusion coefficient depends on a weighted spatial average of the density itself. We show that large differences (not present in the local density-dependence case) appear between the density equations that are derived from different representations of the Langevin equation describing a system of interacting Brownian particles. Linear stability analysis demonstrates that under some circumstances the density equation interpreted like Ito has pattern solutions, which never appear for the kinetic interpretation, which is the other one typically appearing in the context of nonlinear diffusion processes. We also introduce a discrete-time microscopic model of particles that confirms the results obtained at the macroscopic density level.
Descripción : 4 pages.-- PACS numbers: 05.40.-a, 87.23.Cc, 05.10.Gg.-- Final full-text version of the paper available at: http://dx.doi.org/10.1103/PhysRevE.74.012102.
URI : http://hdl.handle.net/10261/6123
DOI: 10.1103/PhysRevE.74.012102
ISSN: 1539-3755
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PhysRevE_74_012102.pdf125,35 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.