English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/61111
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Quantum plexcitonics: Strongly interacting plasmons and excitons

AuthorsManjavacas, Alejandro ; García de Abajo, Francisco Javier ; Nordlander, Peter
Issue Date2011
PublisherAmerican Chemical Society
CitationNano Letters 11(6): 2318-2323 (2011)
AbstractWe present a fully quantum mechanical approach to describe the coupling between plasmons and excitonic systems such as molecules or quantum dots. The formalism relies on Zubarev's Green functions, which allow us to go beyond the perturbative regime within the internal evolution of a plasmonic nanostructure and to fully account for quantum aspects of the optical response and Fano resonances in plasmon - excition (plexcitonic) systems. We illustrate this method with two examples consisting of an exciton-supporting quantum emitter placed either in the vicinity of a single metal nanoparticle or in the gap of a nanoparticle dimer. The optical absorption of the combined emitter - dimer structure is shown to undergo dramatic changes when the emitter excitation level is tuned across the gap-plasmon resonance. Our work opens a new avenue to deal with strongly interacting plasmon - excition hybrid systems. © 2011 American Chemical Society.
URIhttp://hdl.handle.net/10261/61111
DOI10.1021/nl200579f
Identifiersdoi: 10.1021/nl200579f
issn: 1530-6984
Appears in Collections:(CFMAC-IO) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.