English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/61001
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter

AuthorsCox, L. ; Celis, R. ; Hermosín, M.C. ; Cornejo, J. ; Zsolnay, A.; Zeller, K.
Issue Date2000
PublisherAmerican Chemical Society
CitationEnvironmental Science and Technology 34(21): 4600- 4605 (2000)
AbstractIt has been assessed the influence of four organic amendments (OA) consisting of two commercial humic amendments (liquid LF and solid SF) from olive-mill wastes, a solid urban waste (SUW), and a sewage sludge (SS) on the sorption properties and leaching potential of simazine and 2,4-D. A sandy soil (TR) and a sandy-clay soil with a relatively high montmorillonite content (A) were treated with the diverse OA. Dissolved organic matter (DOM) was extracted from the amendments, the soils, and the amended soils and studied by fluorescence spectroscopy. A humification index (HIX) was calculated from the fluorescence data. Sorption was determined with the batch technique. Spectroscopical studies revealed that the DOM of the LF differs from the other OA by having a very low ability to absorb and to fluoresce and by its very low HIX values, which indicates that the LF contains large amounts of nonhumified material and consists of small molecules. On the other hand, the SF amendment contains the highest amounts of highly humified material and a large number of carboxylic groups. Amended soils sorbed simazine and 2,4-D to a greater extent than the untreated soils, except in the case of simazine sorption in the LF amended soil A, which had a lower simazine sorption than the original soil. The small molecules of DOM in the LF compete with simazine for montmorillonite sorption sites in soil A. This is not the case for 2,4-D, since this herbicide does not sorb on montmorillonite. In the case of the soil TR, with a lower montmorillonite content, there is no competition between simazine and the LF molecules for sorption sites. Soils amended with the highly humified SF were the best sorbents for simazine but not for 2,4-D, which can be attributed to repulsion between negatively charged 2,4-D molecules and COOgroups, which are more abundant in SF.
URIhttp://hdl.handle.net/10261/61001
DOI10.1021/es0000293
Identifiersdoi: 10.1021/es0000293
issn: 0013-936X
e-issn: 1520-5851
Appears in Collections:(IRNAS) Artículos
Files in This Item:
File Description SizeFormat 
Effect of organic amendments on herbicide sorption.pdf126,62 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.