English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/6033
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Logistic population growth and beyond: the influence of advection and nonlocal effects

AutorHernández-García, Emilio ; Hernández-García, Emilio ; López, Cristóbal
Palabras claveBugs
Fecha de publicación1-ene-2006
EditorSpringer
CitaciónThe Logistic Map and the Route to Chaos, edited by M. Ausloos and M. Dirickx, pp. 117-129 (2006)
ResumenBy introducing the logistic equation in the context of demographic modelling, J.F. Verhulst made seminal contributions to at least two important fields of research: The quantitative approach to Population Dynamics, and the basics of Nonlinear Science. The dynamics of biological populations in aquatic environments is an excellent framework to see recent developments in which these disciplines work together.
In this contribution we present two examples of this. In both cases a prominent role is played by the logistic growth process (i.e. population growth limited by finite resources), but other ingredients are also included that strongly change the phenomenology. First, a phytoplankton population experiencing logistic growth is studied, but in interaction with zooplankton predators that maintain it in a state below the carrying capacity of the supporting medium. In the appropriate parameter regime the system behaves in an excitable way, with perturbations inducing large excitation-deexcitation cycles of the phytoplankton population. The excitation cycles become strongly affected by the presence of chaotic motion of the fluid containing the populations.
Second, an individual based model of interacting organisms is presented, for which logistic growth is again the main ingredient. Reproduction of a given individual is limited by the presence of others in a neighborhood of finite size. This nonlocal character of the interaction is enough to produce an instability of the basic state of particles homogenously distributed, and clustering of the individuals occurs, which form groups arranged in an hexagonal lattice (when the population lives in a two-dimensional space).
DescripciónThe original publication is available at Springer website: http://www.springer.com/physics/book/978-3-540-28366-9.
URIhttp://hdl.handle.net/10261/6033
ISBNISBN-10: 3-540-28366-8
ISBN-13: 978-3-540-28366-9
Aparece en las colecciones: (IFISC) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Verhulst200.pdf1,05 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.