English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/59357
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al–Si alloy

AuthorsGarcía-Infanta, J.M.; Zhilyaev, A. P.; Carreño, Fernando; Ruano, Oscar Antonio; Su, J. Q.; Menon, S. E.; McNelley, T. R.
Mechanical property
Thermomechanical cycle
Issue Date2010
CitationJournal of Materials Science 45 (17) : 4613-4620 (2010)
AbstractMicrostructure evolution in an as-cast Na modified Al–7%Si (wt. pct.) alloy was examined during redundant and monotonic straining by repetitive equi-channel angular pressing (ECAP) under ambient temperature conditions, and during friction stir processing (FSP). Redundant straining during repetitive ECAP was accomplished by processing following route BC while monotonic straining employed route A. Single- and multi-pass FSP was conducted on this same as-cast material using an FSP tool having a threaded pin. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The evolution of this microstructure during repetitive ECAP can be described by idealized models of this process. The primary and eutectic constituents can still be discerned and the Si particle distribution is not homogenized even during ambient temperature processing involving von Mises strains >9.0. In contrast, the primary and eutectic constituents cannot be distinguished in the stir zone after even a single FSP pass. Strain estimates based on the shape change of the primary α constituent indicate that the Si particle distribution has become homogeneous at local von Mises strains of 2.5–3.0 during the FSP thermomechanical cycle. Mechanical property data are consistent with strain path during SPD processing by repetitive ECAP and FSP.
Publisher version (URL)http://dx.doi.org/10.1007/s10853-010-4530-4
Appears in Collections:(CENIM) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.