Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/59282
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest.

AutorSardans, Jordi CSIC ORCID; Peñuelas, Josep CSIC ORCID ; Ogaya, Romá CSIC ORCID
Palabras claveCalcium
Drought
Iron
Magnesium
Mediterranean forest
Molybdenum
Sulfur
Fecha de publicaciónene-2008
EditorSpringer Nature
CitaciónBiogeochemistry 87(1) : 49-69 (2008)
ResumenWe conducted a 6-year field manipulation drought experiment in an evergreen Quercus ilex forest where we simulated the drought predicted by GCM and ecophysiological models for the coming decades (an average of 15% soil moisture reduction). We thereby tested the hypothesis that enhanced drought will change Ca, Fe, Mg, Mo and S availability, concentrations and accumulation patterns in Mediterranean ecosystems. The strongest effects of drought occurred in the soil. Drought increased the total soil concentrations of S, the soil extract concentrations of Fe, Mg and S, the Mg saturation in the soil exchangeable complex and tended to increase the percentage base saturation of the soil exchangeable complex. These increased soil concentrations were related to a decrease of plant uptake capacity and not to an increase of soil enzyme activity, which in fact decreased under drier conditions. Drought increased leaf Mg concentrations in the three dominant species although only significantly in Quercus ilex and Arbutus unedo (20 and 14%, respectively). In contrast, drought tended to decrease Ca in Phillyrea latifolia (18%) and Ca and Fe concentrations in the wood of all three species. Drought increased Ca and Fe concentrations in the roots of Quercus ilex (26 and 127%). There was a slight general trend to decrease total biomass accumulation of nutrients that depend on water flux such as Mg, Fe and S. This effect was related to a decrease of soil moisture that reduced soil flow, and to a decrease in photosynthetic capacity, sap flow, transpiration and growth, and therefore plant uptake capacity under drought observed in Quercus ilex and Arbutus unedo. On the contrary, drought increased Mo accumulation in aboveground biomass in Phillyrea latifolia and reduced Mo accumulation in Arbutus unedo by reducing growth and wood Mo concentrations (51%). Phillyrea latifolia showed a great capacity to adapt to drier conditions, with no decrease in growth, an increase of Mo uptake capacity and a decrease in leaf Ca concentration, which was related to a decrease in transpiration under drought. The results indicate asymmetrical changes in species capacity to accumulate these elements, which are likely to produce changes in inter-specific competitive relations among dominant plant species and in their nutritional quality as food sources. The results also indicate that drought tended to decrease nutrient content in aboveground biomass, mainly through the decrease in growth and transpiration of the most sensitive species and caused an increase in the availability of these nutrients in soil. Thus, drought decreased the ecosystem’s capacity to retain Mg, Fe and S, facilitating their loss in torrential rainfalls.
Descripción21 páginas, 5 tablas, 10 figuras.
Versión del editorhttp://dx.doi.org/10.1007/s10533-007-9167-2
URIhttp://hdl.handle.net/10261/59282
DOI10.1007/s10533-007-9167-2
ISSN0168-2563
Aparece en las colecciones: (CEAB) Artículos

Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

69
checked on 17-mar-2024

WEB OF SCIENCETM
Citations

57
checked on 23-feb-2024

Page view(s)

323
checked on 27-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.