English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/56886
Título

NMR-based analysis of aminoglycoside recognition by the resistance enzyme ANT(4´): the pattern of OH/NH3(+) substitution determines the preferred antibiotic binding mode and is critical for drug inactivation

AutorRevuelta, Julia ; Vacas, Tatiana ; Torrado, Mario; Corzana, Francisco; González, Carlos ; Jiménez-Barbero, Jesús ; Menéndez, Margarita ; Bastida, Agatha; Asensio, Juan Luis
Fecha de publicación16-may-2008
EditorAmerican Chemical Society
CitaciónJournal of the American Chemical Society 130(15): 5086-5103(2008)
ResumenThe most significant mechanism of bacterial resistance to aminoglycosides is the enzymatic inactivation of the drug. Herein, we analyze several key aspects of the aminoglycoside recognition by the resistance enzyme ANT(4′) from Staphylococcus aureus, employing NMR complemented with site-directed mutagenesis experiments and measurements of the enzymatic activity on newly synthesized kanamycin derivatives. From a methodological perspective, this analysis provides the first example reported for the use of transferred NOE (trNOE) experiments in the analysis of complex molecular recognition processes, characterized by the existence of simultaneous binding events of the ligand to different regions of a protein receptor. The obtained results show that, in favorable cases, these overlapping binding processes can be isolated employing site-directed mutagenesis and then independently analyzed. From a molecular recognition perspective, this work conclusively shows that the enzyme ANT(4′) displays a wide tolerance to conformational variations in the drug. Thus, according to the NMR data, kanamycin-A I/II linkage exhibits an unusual anti-Ψ orientation in the ternary complex, which is in qualitative agreement with the previously reported crystallographic complex. In contrast, closely related, kanamycin-B is recognized by the enzyme in the syn-type arrangement for both glycosidic bonds. This observation together with the enzymatic activity displayed by ANT(4′) against several synthetic kanamycin derivatives strongly suggests that the spatial distribution of positive charges within the aminoglycoside scaffold is the key feature that governs its preferred binding mode to the protein catalytic region and also the regioselectivity of the adenylation reaction. In contrast, the global shape of the antibiotic does not seem to be a critical factor. This feature represents a qualitative difference between the target A-site RNA and the resistance enzyme ANT(4′) as aminoglycoside receptors
Descripción18 páginas, 14 figuras, 2 tablas -- PAGS nros. 5086-5103
Versión del editorhttp://dx.doi.org/10.1021/ja076835s
URIhttp://hdl.handle.net/10261/56886
DOI10.1021/ja076835s
ISSN0002-7863
E-ISSN1520-5126
Aparece en las colecciones: (IQFR) Artículos
(CIB) Artículos
(IQOG) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
restringido.pdf21,67 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.