English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/56631
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection

AuthorsGalindo, Ruth C. ; Ayllón, Nieves ; Boadella, Mariana ; Beltrán-Beck, Beatriz ; Lastra, José M. P. de la; Kocan, Katherine M.; Gortázar, Christian ; Fuente, José de la
Issue Date30-Aug-2012
PublisherBioMed Central
CitationParasites & Vectors 5(1): 181 (2012)
Abstract[Background]: Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. [Results]: For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. [Conclusions]: These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.
DescriptionThis is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.
Publisher version (URL)http://dx.doi.org/10.1186/1756-3305-5-181
URIhttp://hdl.handle.net/10261/56631
DOI10.1186/1756-3305-5-181
E-ISSN1756-3305
Appears in Collections:(IREC) Artículos
Files in This Item:
File Description SizeFormat 
1756-3305-5-181.xml119,08 kBXMLView/Open
1756-3305-5-181.pdf596,21 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.