English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/56353
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems

AuthorsGarbulsky, M. F.; Peñuelas, Josep; Papale, D.; Ardö, Jonas; Goulden, M. L.; Kiely, G.; Richardson, A. D.; Rotenberg, E.; Veenendaal, E. M.; Filella, Iolanda
KeywordsRemote sensing
Terrestrial vegetation
Carbon cycle
Climatic controls
Eddy covariance
Gross primary productivity
Radiation use efficiency
Issue Date2010
PublisherBlackwell Publishing
CitationGlobal Ecology and Biogeography 19 (2) : 253-267 (2010)
AbstractAim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between -13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra-annual variability of the RUE at the coldest energy-limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra-annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra-annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.
Description15 páginas, 6 figuras, 2 tablas.
Publisher version (URL)http://dx.doi.org/10.1111/j.1466-8238.2009.00504.x
URIhttp://hdl.handle.net/10261/56353
DOI10.1111/j.1466-8238.2009.00504.x
ISSN1466-822X
E-ISSN1466-8238
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.