English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/56299
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Hydrography shapes bacterial biogeography of the Deep Arctic Ocean

AuthorsGaland, Pierre E. ; Casamayor, Emilio O. ; Potvin, Marianne; Lovejoy, Connie
KeywordsBiogeography
Dark ocean
Bacteria
Arctic Ocean
Pyrosequencing
Water mass
Issue Date2010
PublisherNature Publishing Group
CitationThe ISME Journal 4 : 564–576 (2010)
AbstractIt has been long debated as to whether marine microorganisms have a ubiquitous distribution or patterns of biogeography, but recently a consensus for the existence of microbial biogeography is emerging. However, the factors controlling the distribution of marine bacteria remain poorly understood. In this study, we combine pyrosequencing and traditional Sanger sequencing of the 16S rRNA gene to describe in detail bacterial communities from the deep Arctic Ocean. We targeted three separate water masses, from three oceanic basins and show that bacteria in the Arctic Ocean have a biogeography. The biogeographical distribution of bacteria was explained by the hydrography of the Arctic Ocean and subsequent circulation of its water masses. Overall, this first taxonomic description of deep Arctic bacteria communities revealed an abundant presence of SAR11 (Alphaproteobacteria), SAR406, SAR202 (Chloroflexi) and SAR324 (Deltaproteobacteria) clusters. Within each cluster, the abundance of specific phylotypes significantly varied among water masses. Water masses probably act as physical barriers limiting the dispersal and controlling the diversity of bacteria in the ocean. Consequently, marine microbial biogeography involves more than geographical distances, as it is also dynamically associated with oceanic processes. Our ocean scale study suggests that it is essential to consider the coupling between microbial and physical oceanography to fully understand the diversity and function of marine microbes.
Description13 páginas, 5 figuras, 2 tablas.
Publisher version (URL)http://dx.doi.org/10.1038/ismej.2009.134
URIhttp://hdl.handle.net/10261/56299
DOI10.1038/ismej.2009.134
ISSN1751-7362
E-ISSN1751-7370
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.