Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/5531
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Landau levels and Riemann zeros

AuthorsSierra, Germán CSIC ORCID; Townsend, Paul K.
KeywordsMathematical Physics
Mesoscopic Systems and Quantum Hall Effect
High Energy Physics - Theory
Number Theory
Quantum Physics
[PACS] Algebraic structures and number theory
[PACS] Quantum chaos; semiclassical methods
Issue Date12-Sep-2008
PublisherAmerican Physical Society
CitationPhysical Review Letters 101(11): 110201 (2008)
SeriesIFT-UAM/CSIC 08-26
DAMTP-2008-46
AbstractThe number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a `smooth' function Ñ(E) and a 'fluctuation'. Berry and Keating have shown that the asymptotic expansion of Ñ(E) counts states of positive energy less than E in a 'regularized' semi-classical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states 'missing' from a continuum. Here we show how the 'absorption spectrum' model of Connes emerges as the lowest Landau level limit of a specific quantum mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).
Description4 pages, 2 figures.-- PACS numbers: 02.10.De, 05.45.Mt.-- ArXiv pre-print available at: http://arxiv.org/abs/0805.4079
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevLett.101.110201
URIhttp://hdl.handle.net/10261/5531
DOI10.1103/PhysRevLett.101.110201
ISSN0031-9007
Appears in Collections:(IFT) Artículos

Files in This Item:
File Description SizeFormat
0805.4079v1.pdfPre-print article183,33 kBAdobe PDFThumbnail
View/Open
Sierra_Townsend_PRL_101_2008.pdfFinal version223,11 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

SCOPUSTM   
Citations

32
checked on May 16, 2022

WEB OF SCIENCETM
Citations

32
checked on May 21, 2022

Page view(s)

783
checked on May 21, 2022

Download(s)

496
checked on May 21, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.