English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/54412
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Analytic coherent control of plasmon propagation in nanostructures

AuthorsTuchscherer, Philip; Rewitz, Christian; Voronine, Dmitri V.; García de Abajo, Francisco Javier ; Pfeiffer, Walter; Brixner, Tobias
Issue Date2009
PublisherOptical Society of America
CitationOptics Express 17: 14235- 14259 (2009)
AbstractWe present general analytic solutions for optical coherent control of electromagnetic energy propagation in plasmonic nanostructures. Propagating modes are excited with tightly focused ultrashort laser pulses that are shaped in amplitude, phase, and polarization (ellipticity and orientation angle). We decouple the interplay between two main mechanisms which are essential for the control of local near-fields. First, the amplitudes and the phase difference of two laser pulse polarization components are used to guide linear flux to a desired spatial position. Second, temporal compression of the near-field at the target location is achieved using the remaining free laser pulse parameter to flatten the local spectral phase. The resulting enhancement of nonlinear signals from this intuitive analytic two-step process is compared to and confirmed by the results of an iterative adaptive learning loop in which an evolutionary algorithm performs a global optimization. Thus, we gain detailed insight into why a certain complex laser pulse shape leads to a particular control target. This analytic approach may also be useful in a number of other coherent control scenarios. © 2009 Optical Society of America.
Identifiersdoi: 10.1364/OE.17.014235
issn: 1094-4087
Appears in Collections:(CFMAC-IO) Artículos
Files in This Item:
File Description SizeFormat 
Tuchscherer.pdf1,16 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.