English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/52688
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

AuthorsCoe, Benjamin J.; Helliwell, Madeleine; Brunschwig, Bruce S.; Clays, Koen; Garín, Javier; Orduna, Jesús; Horton, Peter N.; Hursthouse, Michael B.
Issue Date2010
PublisherAmerican Chemical Society
CitationJournal of the American Chemical Society 132(5): 1706-1723 (2010)
AbstractIn this article, we describe a series of complexes with electron-rich cis-{RuII(NH3)4}2+ centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF6− salts and characterized by using various techniques including 1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible RuIII/II waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π* metal-to-ligand charge-transfer (MLCT) and π → π* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β0 responses as high as ca. 600 × 10−30 esu. These pseudo-C2v chromophores show two substantial components of the β tensor, βzzz and βzyy, although the relative significance of these varies with the physical method applied. According to HRS, βzzz dominates in all cases, whereas the Stark analyses indicate that βzyy is dominant in the shorter chromophores, but βzzz and βzyy are similar for the extended species. In contrast, finite field calculations predict that βzyy is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891).
URIhttp://hdl.handle.net/10261/52688
DOI10.1021/ja908667p
Identifiersdoi: 10.1021/ja908667p
issn: 0002-7863
e-issn: 1520-5126
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.