English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/52464
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

C-H bond activation of terminal allenes: Formation of hydride- alkenylcarbyne-osmium and disubstituted vinylidene-ruthenium derivatives

AuthorsCollado, Alba; Esteruelas, Miguel A. ; López, Fernando; Mascareñas, José L. ; Oñate, Enrique ; Trillo, Beatriz
Issue Date2010
PublisherAmerican Chemical Society
CitationOrganometallics 29(21): 4966-4974 (2010)
AbstractThe reactivity of the dihydrides MH2Cl2(P iPr3)2 (M = Os (1), Ru (2)) toward allenes has been studied. Complex 1 reacts with 2 equiv of 3-methyl-1,2-butadiene and 1-methyl-1-(trimethylsilyl)allene to give 1 equiv of olefin and the π-allene derivatives OsCl2(η2-CH2=C=CRMe)(P iPr3)2 (R = Me (3), Me3Si (4)). The X-ray structure of 4 proves the coordination to the metal center of the carbon-carbon double bond of the allene with the lowest steric hindrance. In toluene, complexes 3 and 4 are unstable and evolve into the hydride- alkenylcarbyne derivatives OsHCl2(≡CCH=CRMe)(P iPr3)2 (R = Me (5), Me3Si (6)). DFT calculations on the model compound OsCl2(η2-CH 2=C=CMe2)(PMe3)2 (3t) suggest that the π-allene to hydride-alkenylcarbyne transformation involves the migration of both hydrogen atoms of the CH2 group of the allene. The first of them occurs between the terminal and central carbon atoms and takes place throught the metal center. The second one is a 1,2-hydrogen shift from the allene terminal carbon to osmium. The reactions of the ruthenium complex 2 with the previously mentioned allenes give olefins and RuCl2(η 2-CH2=C=CRMe)(PiPr3)2 (R = Me (7), Me3Si (8)), which in dichloromethane and in the presence of allene afford the disubstituted vinylidene complexes RuCl2(=C=CRMe) (PiPr3)2 (R = Me (9), Me3Si (10)). The structure of 10 in the solid state has been determined by X-ray diffraction analysis. DFT calculations show that the formation of 9 and 10 can be rationalized in terms of the initial isomerization of 7 and 8 to alkenylcarbene species, which subsequently undergo metathesis reactions with a second allene molecule. © 2010 American Chemical Society.
Identifiersdoi: 10.1021/om100192t
issn: 0276-7333
e-issn: 1520-6041
Appears in Collections:(IQOG) Artículos
(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.