English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/51966
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Joint Bayesian separation and restoration of cosmic microwave background from convolutional mixtures

AuthorsKayabol, K; Sanz, J. L.; Herranz, D. ; Kuruoglu, E. E.; Salerno, E.
Issue Date2011
CitationMonthly Notices of the Royal Astronomical Society 415(2): 1334-1342 (2011)
AbstractWe propose a Bayesian approach to joint source separation and restoration for astrophysical diffuse sources. We constitute a prior statistical model for the source images by using their gradient maps. We assume a t-distribution for the gradient maps in different directions, because it is able to fit both smooth and sparse data. A Monte Carlo technique, called Langevin sampler, is used to estimate the source images and all the model parameters are estimated by using deterministic techniques.
Identifiersdoi: 10.1111/j.1365-2966.2011.18783.x
issn: 0035-8711
e-issn: 1365-2966
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
Joint Bayesian separation.pdf950,68 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.