English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/51178
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Discussion on second-order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows

AutorLaín, S.; Aliod, R.
Fecha de publicación2003
EditorPergamon Press
CitaciónChemical Engineering Sciences 58: 4527-4535 (2003)
ResumenIn this work a Reynolds stress two-phase flow model is presented. Equations for the second-order statistical moments are considered for both phases, continuous and dispersed, in the limit of high-inertia non-colliding particles. A simplified version of this model is used for studying axisymmetric particle-laden gas jets. Emphasis is made in the analysis of the dispersed phase equations only. The equations for radial and axial momentum and normal Reynolds stresses for the particulate phase are divided into their basic terms and analysed separately. The modelling of the corresponding shear stresses relies on a Boussinesq closure, consistent with the theoretical work of Reeks (Phys. Fluids A 5(3) (1993) 750) and Zaichik (J. Appl. Math. Mech. 61 (1997) 127) in the limit of high-inertia particles. By this procedure a global picture of the momentum and fluctuating energy transfer in the flow is attained. Moreover, the dispersed phase and fluid-particle velocity correlation, that enter the interaction terms describing the exchange of fluctuating energy between the phases, are compared with the result of Reeks' and Zaichik's theoretical expressions in the case of simple shear flow. © 2003 Elsevier Ltd. All rights reserved.
Identificadoresdoi: 10.1016/S0009-2509(03)00339-7
issn: 0009-2509
Aparece en las colecciones: (LIFTEC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.