English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/50964
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Electroresistance Effect in Ferroelectric Tunnel Junctions with Symmetric Electrodes

AuthorsBilc, D. I.; Novaes, Frederico D. ; Íñiguez, Jorge ; Ordejón, Pablo ; Ghosez, P.
Issue Date2012
PublisherAmerican Chemical Society
CitationACS Nano 6: 1473-1478 (2012)
AbstractUnderstanding the effects that govern electronic transport in ferroelectric tunnel junctions (FTJs) is of vital importance to improve the efficiency of devices such as ferroelectric memories with nondestructive readout. However, our current knowledge (typically based on simple semiempirical models or first-principles calculations restricted to the limit of zero bias) remains partial, which may hinder the development of more efficient systems. For example, nowadays it is commonly believed that the tunnel electroresistance (TER) effect exploited in such devices mandatorily requires, to be sizable, the use of two different electrodes, with related potential drawbacks concerning retention time, switching, and polarization imprint. In contrast, here we demonstrate at the first-principles level that large TER values of about 200% can be achieved under finite bias in a prototypical FTJ with symmetric electrodes. Our atomistic approach allows us to quantify the contribution of different microscopic mechanisms to the electroresistance, revealing the dominant role of the inverse piezoelectric response of the ferroelectric. On the basis of our analysis, we provide a critical discussion of the semiempirical models traditionally used to describe FTJs. © 2012 American Chemical Society.
URIhttp://hdl.handle.net/10261/50964
DOI10.1021/nn2043324
Identifiersdoi: 10.1021/nn2043324
issn: 1936-0851
Appears in Collections:(CIN2) Artículos
(ICMAB) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.