English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/50912
Título

Time-dependent bond-current functional theory for lattice Hamiltonians: Fundamental theorem and application to electron transport

AutorKurth, S.; Stefanucci, Gianluca
Fecha de publicación2011
EditorElsevier
CitaciónChemical Physics 391(1): 164-172 (2011)
ResumenThe cornerstone of time-dependent (TD) density functional theory (DFT), the Runge-Gross theorem, proves a one-to-one correspondence between TD potentials and TD densities of continuum Hamiltonians. In all practical implementations, however, the basis set is discrete and the system is effectively described by a lattice Hamiltonian. We point out the difficulties of generalizing the Runge-Gross proof to the discrete case and thereby endorse the recently proposed TD bond-current functional theory (BCFT) as a viable alternative. TDBCFT is based on a one-to-one correspondence between TD Peierl's phases and TD bond-currents of lattice systems. We apply the TDBCFT formalism to electronic transport through a simple interacting device weakly coupled to two biased non-interacting leads. We employ Kohn-Sham Peierl's phases which are discontinuous functions of the density, a crucial property to describe Coulomb blockade. As shown by explicit time propagations, the discontinuity may prevent the biased system from ever reaching a steady state. © 2011 Elsevier B.V. All rights reserved.
DescripciónEl pdf del artículo es la versión post-print: arXiv:1012.4296
Versión del editorhttp://dx.doi.org/10.1016/j.chemphys.2011.01.016
URIhttp://hdl.handle.net/10261/50912
DOI10.1016/j.chemphys.2011.01.016
Identificadoresdoi: 10.1016/j.chemphys.2011.01.016
issn: 0301-0104
Aparece en las colecciones: (CFM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Time-dependent bond-current functional theory.pdf341,55 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.